ENERGY Conservation

Ravindra Datar

By

Senergy Consultants (P) Ltd

<u>ravi@senergy.co.jn</u> www.senergy.india.com

Can I contribute?

Why should I contribute?

How can I contribute?

Each one of us

can

Contribute!

Switching ON gadgets if & Only if Required

Lights & fans

Computers

Air Conditioning system

Pumps , Elevators & other Auxiliaries

Being observant about

Consumption during non-working periods

Changes in the consumption / usage patterns

Part load operation

Losses & unaccounted consumption

Consumption during non-working periods

Office Premises – Power

Factory – Pump

Lighting - Single Switch

Lighting - Street / Parking Area

Changes in consumption / usage patterns

Overall Consumption

Air Compressors

Water Pumps

Air Conditioning System

Part Load Operation

Centralized Air Conditioning System

Air Compressors

Losses & Unaccounted Consumption

Cable Losses

Power Theft

Faulty Meters

Unmonitored consumption

Why must Contribute?

It Cost Money!

Tube Light	Rs 800/- to Rs 1,200/- per year
Fan	Rs 1,200/- to Rs 1,600/- per year
Computer	Rs 1,000/- to Rs 4,000/- per year
Air Conditioner (1 TR)	Rs 20,000/- to 40,000/- per year
Water Heater (1 kW)	Rs 20,000/- per year
Power Cost of Rs 8.0 per unit	Operation of 2,500 hours a year

It depletes Natural Resources

Tube Light	100 to 250 kg of coal per year
Fans	120 to 160 kg of coal per year
Computers	150 to 600 kg of coal per year
Air Conditioner (1 TR)	3,000 to 6,000 kg of coal per year
Water Heater (1 kW)	3,000 kg of coal per year
Generation & Distribution Efficiency of 18%	Operation of 2,500 hours a year

Fossil Fuels World & India's Reserves

Fossil	World's Reserves	India's Reserves	% of World Reserves	Remarks on Indian Reserves
Coal	984 billion tonnes	84,414 million tonnes	8%	will last for 200 years
Crude Oil	140.4 billion tonnes	658 million tonnes	0.46%	will last for 16 years
Natural Gas	144.8 trillion cubic meter	628 billion cubic meters	0.43%	will last for 23 years

It adds to Global Warming

Tube Light	200 to 500 kg of CO ₂ per year
Fans	240 to 320 kg of CO ₂ per year
Computers	300 to 1,200 kg of CO ₂ per year
Air Conditioner (1 TR)	6,000 to 12,000 kg of CO ₂ per year
Water Heater (1 kW)	6,000 kg of CO ₂ per year
Generation & Distribution Efficiency of 18%	Operation of 2,500 hours a year

The Greenhouse effect

ATMOSPHERE

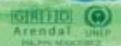
1 Solar radiation passes through the clear atmosphere. Incoming solar radiation: 343 Watt per m² 3 Some solar radiation is reflected by the atmosphere and earth's surface Outgoing solar radiation: 103 Watt per m³ 6 Some of the infrared radiation passes through the atmosphere and is lost in space

Het outgoing infrared redistion 200 With per in!

GREEN

Net incoming solar radiation: 240 Watt per m²

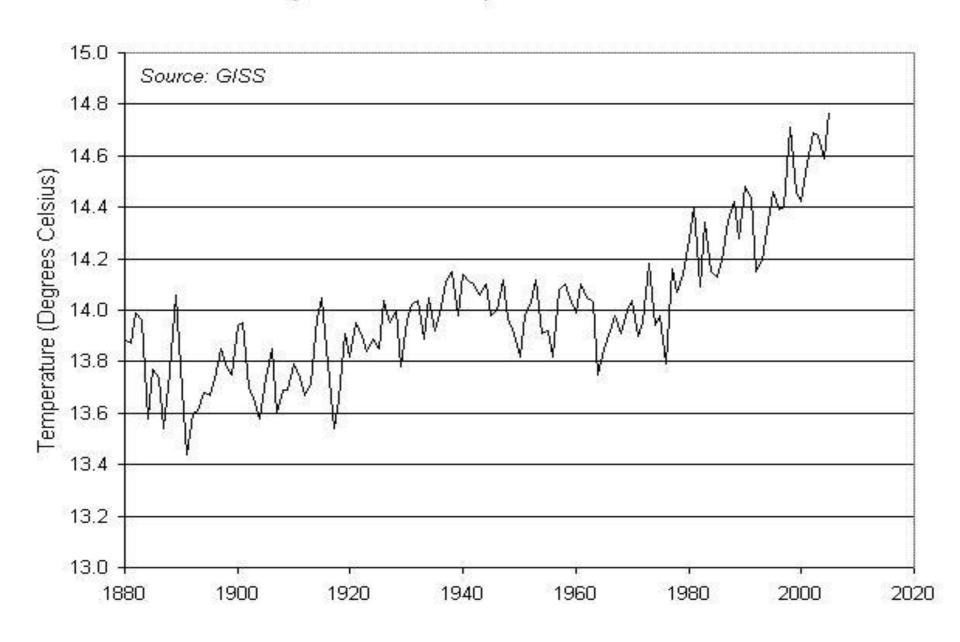
UN


Some of the infrared radiation is absorbed and re-emitted by the greenhouse gas molecules. The direct effect is the warming of the earth's surface and the troposphere.

> Surface gains more heat and infrared radiation is emitted again

4 Solar energy is absorbed by the earth's surface and warms it...

168 Watt per mi


... and is converted into heat causing the emission of longwave (infrared) radiation back to the atmosphere

EARTH

Sources: Okanagan university college in Canada, Department of geography, University of Oxford, school of geography; United States Environmental Protection Agency (EPA), Washington; Climate change 1995, The science of climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge university press, 1996.

Average Global Temperature, 1880-2005

How can Contribute?

Take Initiative – Bell the CAT

Switch ON if & only if REQUIRED

Be ALEART! Check for Deviations / Changes.

 Set thermostat on the highest comfortable temperature.

Use daylight, wherever possible

Fundamentals

Efficient Equipments.

Minimal Distribution Losses.

Proficient Operation & Maintenance.

Effective Utilization.

Recovery of Waste Energy

Efficient Equipments

Equipment	Normal	Most Efficient
Air Conditioner	1.5 kWh/TR	0.9 kWh/TR
Tube Light	65 Lumen/Watt	110 Lumen/Watt
Ballast for tube light	15 W	3 W with 10% more light
Glass	100% heat gain	10 to 20% heat gain

Minimal Distribution Losses

Cables / Switchgear of correct Specifications.
 (Electricity Boards lose 40 to 50% in Transmission & distribution.)

Capacitors at key locations.

Regular cleaning / maintenance of the switch gear.

Balancing of load.

Proficient Operation & Maintenance

Regular Cleaning of filters of indoor units.

Maintaining correct quantity of refrigerant.

 Regular cleaning fins, radiators and fan blades of outdoor units.

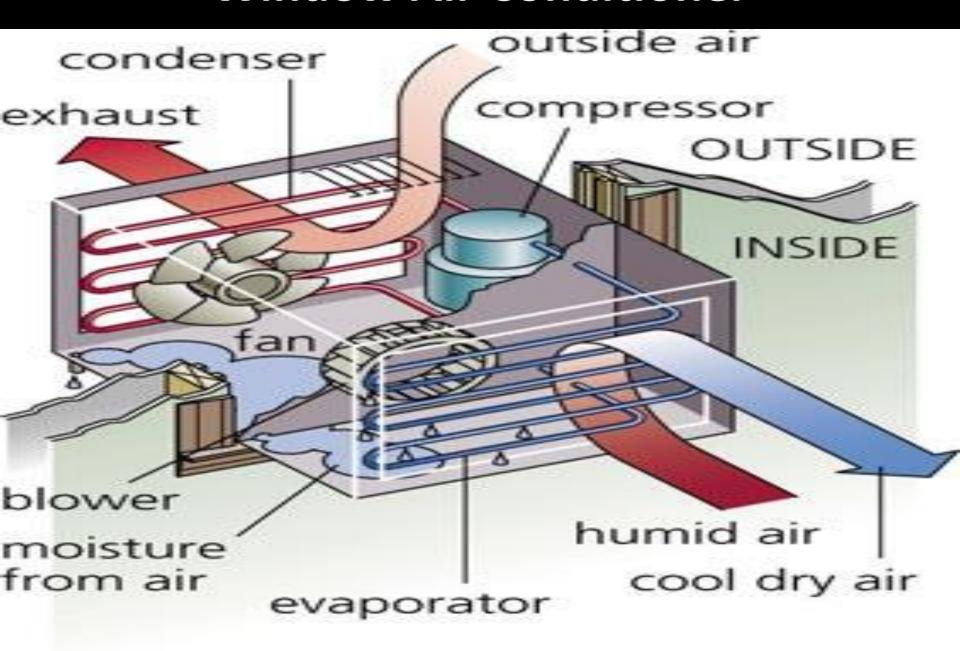
Periodic maintenance of luminaries.

Effective Utilization

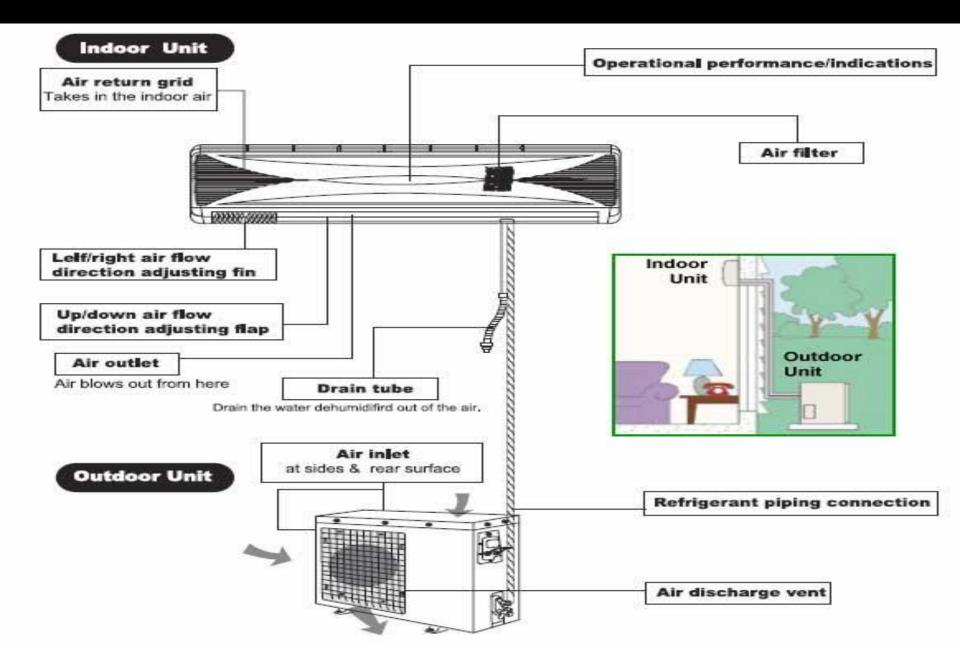
Setting thermostat at the maximum comfortable temperature.

Maintaining correct illumination level.

Switching off equipments in un-occupied areas.


Recovery of Waste Energy

Heat pump for simultaneous generation of hot & cold water.


Biogas from canteen waste.

Air Conditioners

Window Air Conditioner

Split Air Conditioner

TR

TR

TR

Power (kW)

Power (kW)

Power (kW)

kW/TR

KW/TR

KW/TR

 $+40^{0}$

1.43

1.02

0.72

1.18

0.968

0.82

0.96

0.896

0.93

 $+50^{0}$

1.27

1.17

0.93

1.04

1.09

1.05

0.84

0.994

1.19

Effect of	r remperature
Evaporator	Condenser Temperature

ETTECT O	r iemperature
Evaporator	Condenser To

Temperature

+5°C

 $0^{0}C$

-5°C

 Each 1 °C increase in thermostat setting saves 3 to 5% in power. It also drops capacity by 1.5 to 2%.

• Each 1 °C rise in condensing temperature increases power by 5 to 6%. It also reduces capacity by 3 to 4%.

 Solar rays directly falling on the condenser can increase power by 5 to 15%. It shall also reduce capacity by 3 to 10%.

Heat load on Air Conditioners

- •Human beings 20 to 40% of load
- •Heat ingress from windows Up to 0.8 TR/M²/day.
- •Heat gain through ceiling Up to 1.5 TR/M²/day.
- Heat ingress through openings.
- •Heat gain through walls, window frames, doors
- •Heat load from computers, printers & lighting.

Lighting

Light Sources Description Rating Efficacy

5 to 65

70 to

1000

70 to 250

0.1 to 100

80 to 1000

Light

Lamp

High Pressure

High Pressure

Metal Halide

LED Lamps

Sodium Vapour

Mercury Vapour

Compact Fluorescent

Description				
	W	Lumen/W		Hour
Incandescent Bulb	12 to 500	8 to 17	100%	1000
Fluorescent Tube	5 to 65	50 to 110	65 to 80%	5000

40 to 70

25 to 50

60 to 90

70 to 80

60 to 140

CRI

70 to 80%

50%

40%

80%

80 to 100%

Life

8000

8000 to

10000

12000

10000

50000 to

100000

Illumination Level

Hall, Lobby

room

Office work / Reading

Inspection & Drawing

Visually difficult task

General	20 to 50 Lux	Outdoor, stores, Yard
Interior	50 to 200 Lux	Warehouse, Dining

150 to 250 Lux

300 to 500 Lux

500 & Above

Office

Workshop &

Drawing

Task

Computers

CPU

Description	Tower	Laptop
Maximum	150 W	75 W
Average	120 W	60 W
Idle	80 W	40 W
Stand by / Hibernate	15 W	3 to 5 W
Power Supply	10 W	6 W

Monitor

Parameter	CRT	LCD
Consumption	76 W	25 W
Screen colour	Highly Sensitive.	Insensitive.
Brightness	Moderately sensitive.	Sensitive.
Contrast	Sparingly	Insensitive.
Contrast	sensitive.	msensitive.
Turned off - Power Setting	2W	0 W
Screen Saver Mode consumes similar power.		

Printers & Scanners

Description	Power
Idle	10 W
Scanning	15 W
Printing	35 W

Road Ahead

Monitoring & Control

Equipment Maintenance

Heat ingress

Hall conditions

Energy Saving gadgets

Usage of daylight

Monitoring & Control

Day to day consumption

Consumption during non-working period

Performance of Air Conditioners

Hall Conditions

Switching ON if & only If required

Equipment Maintenance

Filter cleaning

Refrigerant Quantity

Radiator cleaning

Cleaning of luminaries

Heat Ingress

• Films / coating for glass - Reject 75% of solar heat.

Coating for Ceiling - Reradiate 85% of solar heat.

Outdoor units in Shade / with Plant cover .

Plug leakages / gaps to arrest leakages.

Computers - TFT & Effective Power Management system.

Hall Conditions

Maintain Highest comfortable Temperature.

Switch Off, if not occupied.

Energy Saving Gadgets

Intelligent Energy saver for A Cs – saves 15 to 25% energy.

Timer based Energy saver for A Cs – saves 10 to 15% energy.

Capacitors – minimize cable losses.

Solar Water Heater.

Beyond Office

- Energy Conservation Initiatives
 - Commuting & Travelling
 - Home
 - Housing Society
 - Community

Benchmarking specific energy consumption

Thank You!